Physics 263A Problems due April 22

1. A particle of mass m moves in one dimension, subject to a Hamiltonian $H = H_0 + W$, where H_0 is the usual harmonic-oscillator Hamiltonian $\frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2$, and where W satisfies

$$\begin{split} W \big| \phi_0 \big\rangle &= 0; \\ W \big| \phi_1 \big\rangle &= \frac{1}{2} \hbar \omega \big| \phi_2 \big\rangle; \\ W \big| \phi_2 \big\rangle &= \frac{1}{2} \hbar \omega \big| \phi_1 \big\rangle; \\ W \big| \phi_n \big\rangle &= 0 \quad for \ n > 2. \end{split}$$

Here the $|\phi_i\rangle$ are the (usual) eigenstates of H_0 .

Note that the constant ω which appears in the definition of W is the same ω which appears in the expression for H_0 .

Find the three lowest energies, and the corresponding states (in terms of the $|\phi_i\rangle$.

2. Consider two coupled oscillators (as discussed in complement H_V) where the system is in its ground state. Calculate the expectation value of $(X_1)^2$ (in terms of m, ω , a, and λ .)